

Performance comparisons of different front-ends for UPS systems					
Parameters	Diode-IGBT Chopper	Thyristorised converter	IGBT based active converter		
Efficiency	 Improves AC-DC and overall AC-AC efficiency – typically more than 90% at full load Low switching & conduction loss for diode device – natural commutation IGBT chopper switching and conduction loss negligible Additional input current harmonic filters are not required Low operating cost 	 Reduces AC-DC and over all AC-AC efficiency SCR switching and conduction losses Simple On gate circuit Self commutating (natural off control) Additional input current harmonic filters required High operating cost 	Improves AC-DC and overall AC-AC efficiency. Typically, its 94-96% AC-AC efficiency at 100% load IGBT switching n conduction losses Simple IGBT drive control circuit Low IGBT control power consumption Additional input harmonic fitlers not required High operating cost		
Cost	 Cost competitive converters Reasonably priced as diodes with large power capabilities are available for many years now No control circuitry required for diode bridge IGBT chopper utilises small quantity of IGBTs Simple IGBT drive circuitry Additional input not required so additional cost is avoided 	 Cost competitive converters SCR devices with large current capabilities are available for many years and quite reasonably priced Simple on gate circuit Self commutating (natural off control) Additional cost towards input current harmonic filters can drive the cost upwards. 	Costly converters Cost is important when applying IGBTs in converter section. However, the cost is gradually coming down, though, higher ratings converters are more competitive than the lower one.		

Doc No: LL/UPS/Tech Doc/002/16-17 /Rev-00, Contact : info@livelineindia.com or visit www.livelineindia.com

Any data, description or specifications presented here are subject to revision by LiveLine Electronics, Kolkata, without notice. While such information is sincerely believed to be accurate as indicated herein, LiveLine Electronics makes no warranty and also hereby disclaims all warranties, express or implied, with regard to the accuracy or completeness of such information. The user is solely responsible for determining its suitability for his intended purpose and his specific application. All rights reserved.

UPS TECHNICAL NOTES

Performance	High converter	Poor converter	Best converter performance
	performance	performance	
	 performance -Fast response time for the converter IGBT chopper ON/OFF control Fast switching speed Improved PWM control, high converter performance and specs -Low input current harmonic Typically more than 10% at 100% load No need for additional filter No effect to utility No generator compatibility issues -High input power factor 	 performance Slow response time for the converter Slow switching Poor control, converter performance and specs High input current harmonic Typically more than 33% at 100% load Additional filters required for harmonic reduction at the input High THD feedback to utility Generator compatibility issues at low loads Low input power factor 	 Fast response time for the converter IGBT chopper ON/OFF control Fast switching speed Improved PWM control, high converter performance and specs -Low input current harmonic Typically less than 3% at 100% load No need for additional filter No effect to utility No generator compatibility issues -High input power factor Near unity power factor -No generator derating required No over – sizing required due to
	 Typically 0.9 to 0.95 (naturally generated due to diode bridge) -No generator derating required No over – sizing required due to high input power factor and low input current harmonics -Low audible noise -Small size 	 Typically 0.7 lagging , large input KVA requirement Generator derating required Over – sizing required due to low input power factor and high input current harmonics High audible noise Large size and space requirements 	high input power factor and low input current harmonics -Low audible noise -Small size
Large capacity	High converter power capabilities – all devices with large current capabilities available for many years	High converter power capabilities – large rating SCRs available	High converter power capabilities – large rating IGBTs available.

Doc No: LL/UPS/Tech Doc/002/16-17 /Rev-00, Contact : info@livelineindia.com or visit www.livelineindia.com

Any data, description or specifications presented here are subject to revision by LiveLine Electronics, Kolkata, without notice. While such information is sincerely believed to be accurate as indicated herein, LiveLine Electronics makes no warranty and also hereby disclaims all warranties, express or implied, with regard to the accuracy or completeness of such information. The user is solely responsible for determining its suitability for his intended purpose and his specific application. All rights reserved.